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A three-dimensional boundary-layer model of shallow-water flows assuming
hydrostatic pressure with negligible numerical diffusion and wave damping has been
extended to turbulent flow. A standard two-layer mixing-length model determines
vertical length scales. The horizontal mixing length is made a multiple β of the
vertical value and β is determined from comparison with experiment. Eddy viscosity
is of a general three-dimensional form where, for example, the horizontal mixing
length and associated strain rates determine the magnitude of eddy viscosity and
hence vertical mixing (and vice versa). Direct comparison is made with previous
experiments for subcritical flow around a conical island of small side slope which
exhibits the transition from a vigorous vortex-shedding wake to a steady recirculating
wake as the stability parameter, St, is increased. The value of β influences wake
structure, particularly for stability parameters close to the critical (the value at which
the wake becomes steady or stable). The critical value in the experiments was 0.4
and this was reproduced in the model with β = 6. Vortex shedding patterns with
St = 0.26 and 0.36 were qualitatively reproduced. The flows were subcritical with
an onset Froude number of about 0.2, with values approaching 0.6–0.7 in areas
where depth-averaged vorticity magnitude was also greatest, at a small distance from
the wet/dry intersection. At this intersection, depth-averaged vorticity approached
zero while potential vorticity (depth-averaged vorticity/depth) was at a maximum,
indicating the importance of the intersection as an origin for vorticity.

1. Introduction
Shallow-water flows, where the horizontal length scales are much larger than the

vertical depth-limited scales, occur in coastal regions, estuaries and rivers. The subject
has been reviewed in Jirka (2001). Modelling such flows by solving the shallow-
water equations is common practice with several well-known commercial packages
available. (Here ‘modelling’ implies numerical modelling.) Some components of these
flows have been satisfactorily resolved, but here we consider problems associated with
recirculations or wakes due to headlands, islands, sandbanks, etc. It is well known that
model predictions for (unbounded) flows around bluff cylinders are sensitive to the
advection scheme, the order of temporal and spatial discretization, mesh refinement
(or lack of it) and the turbulence modelling strategy. In studies on shallow flows, there
is increasing awareness of corresponding sensitivity as numerical schemes improve.
In the past, first-order time stepping and relatively coarse grids have often made
numerical diffusion and wave damping significant, swamping effects associated with
turbulence modelling. In this paper, we are concerned with bed topographies of small
slope and thus effects due to separation from ‘steep’, in the extreme vertical, surfaces
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are not considered. Turbulence is bed-generated and horizontal recirculations are of a
much larger scale. Without recirculation, attached turbulent flows may be adequately
simulated by the mixing-length turbulence modelling of Prandtl (1927). The two-
layer model is described in Rodi (1984) for steady flow and has been applied to
unsteady flow by, for example, Cobbin, Stansby & Duck (1995). With recirculation,
an appropriate turbulence modelling strategy for horizontal diffusion has yet to
be established. Properly resolved three-dimensional large-eddy simulation (LES) or
full Reynolds-stress-transport modelling are not yet practical propositions for such
large-scale flows.

Depth-averaged modelling has been widely used in the past, and is still popular,
enabling small horizontal scales to be resolved with limited computer resources.
Rastogi & Rodi (1978) notably developed a k − ε model with production of k and
ε obtained by adding components due to bed generation and horizontal strain rates,
effectively implying different horizontal and vertical length scales (k is turbulent
kinetic energy and ε its dissipation rate.) k and ε then determine eddy viscosity.
This has proved a useful pragmatic approach and has been widely applied with
various empirical modifications. There is the limitation of all depth-averaged models
concerning dispersion effects due to the non-uniform vertical variation of velocity. It
has to be assumed that these effects are small or that a standard velocity profile, e.g.
the ‘log’ profile, applies. Depth-averaged modelling will, of course, remain attractive
if predictions are adequate or at least if its limitations can be defined.

This paper applies the three-dimensional shallow-water equations in (partially)
conservative form with the assumption of hydrostatic pressure, which is assumed to
be justified for bed (and free-surface) topographies of small slope. The numerical
method described in Stansby & Lloyd (2001) for laminar flow is used. In that paper,
a wide range of very complex recirculating and vortex-shedding flows were predicted,
at least qualitatively, in oscillatory ambient flows around a conical island of small
slope. The method is semi-implicit, second-order accurate in time (mainly) with finite-
volume discretization. Numerical diffusion and wave damping are kept to a minimum.
This model is extended here to incorporate turbulent flow. Suitable experimental data
for validation are available in Lloyd & Stansby (1997, hereinafter referred to as LS),
where steady ambient flows around conical islands of small slope were investigated. A
desirable feature of these flows is that the wake formation changes dramatically with
depth. They are considered to be prominently dependent on a stability parameter
St= Cf D/h, where Cf is the friction coefficient, D is a representative diameter and h is
depth. This follows investigations for vertically sided circular islands by Chen & Jirka
(1995, hereinafter referred to as CJ), and also in an atmospheric context by Grubišić,
Smith & Schär (1995). Model results presented in LS showed variable agreement
with experiment, but the models had various low-order limitations typical of those
mentioned above. Note that these experiments have simple boundary conditions.
Classical mixing-layer experiments generated by different velocities on either side of
a flat plate require careful modelling at the downstream end of the plate with special
attention paid to horizontal diffusion from the plate.

The intention of this paper is thus to investigate the influence of horizontal diffusion
for a range of recirculating wake flows. The basic hypothesis is that vertical turbulent
length scales are different, probably smaller, than the horizontal scales. The emphasis
may now be entirely on diffusion as dispersion will be simulated automatically. The
mixing-length approach for boundary-layer definition in the vertical is extended to the
horizontal by assuming that there is a horizontal mixing length which is a constant
multiple of the vertical value at a given elevation, thus giving an eddy viscosity
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based on two scales. In this sense, the method may be considered a three-dimensional
development of the basic concept of Rastogi & Rodi, now including dispersion and a
turbulence model with a simple physical interpretation. There is the usual requirement
of turbulence modelling in unsteady flow, that the length scales of the slowly varying
flow structures computed directly, recirculations in this case, are much larger than the
turbulence length scales. This can only be established a posteriori and will be seen to
be the case here. Distributions of vorticity and potential vorticity are considered.

2. Mathematical formulation
The continuity and Navier–Stokes equations in Cartesian form are converted to

σ coordinates to automatically fit the bed and the moving water surface, enabling
high mesh resolution to be produced at the bed for boundary-layer resolution. The σ

coordinate is defined as σ = (z − η)/h where η is surface elevation, h is water depth
and z is the vertical coordinate. The velocities in Cartesian coordinates are u, v and
w in the x, y and z-directions. In the σ coordinate system uσ = u, vσ = v, wσ = ω/h

(defined below) and the σ subscript is dropped hereinafter for u, v and w. With
the assumption for hydrostatic pressure p, ∂p/∂σ = −ρgh, ∂p/∂x = ρg(∂η/∂x) and
∂p/∂y = ρg(∂η/∂y) where ρ is water density and g is acceleration due to gravity.

For local continuity,
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where kinematic eddy viscosity has turbulent and molecular components such that
νE = νt + ν, respectively. Note that advection terms are defined in σ coordinates and
horizontal diffusion in Cartesian coordinates; the latter is discussed further below.
The vertical velocity is defined by
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with ω = 0 when σ = 0, −1, corresponding to the water surface and the bed.
The depth-integrated continuity equation is given by

∂η

∂t
+

∫ 0

−1

hu dσ +

∫ 0

−1

hv dσ = 0. (5)

The vertical mesh is compressed close to the bed using semi-parabolic stretching
as in Stansby & Lloyd (2001). The mesh size at the bed should be small enough
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for z+ = (z − zb)
√

(u2
∗ + v2

∗)/ν to be less than 5 in the laminar sublayer, so that the
no-slip condition may be applied directly at the bed. Here, zb is the bed elevation
and u∗ =

√
ν(∂u/∂z) and v∗ =

√
ν(∂v/∂z) are the friction velocities in the x- and y-

directions. Zero stress is imposed at the water surface. The numerical solution method
is the same as in Stansby & Lloyd (2001), apart from the treatment of horizontal
diffusion, and is summarized below.

It is not possible to use the (local) flux terms hu, hv as general variables since
u and v appear in isolation in the vertical and horizontal diffusion and in the
vertical advection terms. A staggered mesh is used to avoid checkerboard oscillations
within a finite-volume approach. In the momentum equations, second-order Crank–
Nicolson (θ =1/2) time stepping is used for surface elevation gradient terms to obtain
the horizontal velocities and fully implicit time-stepping (θ =1) is used for vertical
diffusion. The fully implicit assumption reduces/avoids a time-step limitation owing
to the very small vertical cell size at the bed and has been effectively validated
in Letherman et al. (2000) for a wide range of oscillatory flows. Time stepping for
advection and horizontal diffusion is treated explicitly, to second-order accuracy, using
the Adams–Bashforth scheme. The upwind QUICK scheme (at least second-order
accurate) is used for the spatial discretization of advection, in conservative form, using
σ coordinates. Horizontal diffusion is discussed below. Second-order Crank–Nicolson
(θ = 1/2) time stepping is used to discretize the depth-integrated continuity equation.
The solution method for each time step is thus to substitute the horizontal velocities
from the momentum equations into the depth-integrated continuity equation for each
horizontal cell. This gives a penta-diagonal equation set for η which is solved by a
conjugate gradient method. The flow is thus defined and horizontal velocities may be
retrieved.

The velocity derivatives defining the stress terms for ‘horizontal diffusion’ were
previously determined from the Cartesian frame of reference by interpolation from
the vertical variations in σ coordinates (Stansby 1997). This avoids certain errors
near steep bed slopes. However, this generated errors in this application with a very
small vertical bed-cell dimension and horizontal gradients are difficult to resolve in
this way. Since we are here concerned with (relatively) small bed gradients, we revert
to the formulation for horizontal gradients obtained from the σ coordinate system.
For example:
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which gives a smooth variation and avoids numerical instability. In the eddy viscosity
formula described below, horizontal derivatives are obtained in the same way. The
stress gradient terms are finally obtained in a conventional finite-volume formulation
(as in Stansby 1997).

3. Turbulence modelling
The mixing-length model has been mainly applied to attached wall boundary

layers with a mixing length l = κ(z − zb) for (z − zb)/δ < λ/κ and l = λδ for
λ/κ < (z − zb)/δ < 1, where κ is the von Kármán constant, typically 0.41, (z − zb)
is the distance from the wall, δ is the boundary layer thickness and λ is a constant,
typically 0.09. In order to return conditions for the viscous sublayer, the mixing
length has to be ‘damped’ close the wall and the standard approach is to use the
van Driest formula: l = κ(z − zb)[1 − exp(−z+/A)], where z+ = u∗(z − zb)/ν and the
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constant A= 26. In the case of the shallow-water flows here due to a steady current,
the boundary-layer thickness may be assumed to be equal to the water depth h. The
eddy viscosity is then defined as νt = l2 |∂u/∂z|, e.g. Rodi (1984). In this definition,
parallel flow in the x-direction has been assumed for convenience. A finite mixing
length at the water surface is, of course, physically unrealistic, but has no effect on
vertical diffusion as the zero stress condition is imposed.

There have not been applications of the mixing-length approach to two or three
dimensions, to the author’s knowledge, but Rodi (1984) suggested a form of the strain
rate parameter which is also widely applied in large-eddy simulation (LES). This
is given by S = (2SijSij )

1/2 and νt = l2S, where Sij = 1
2
(∂ui/∂xj + ∂uj/∂xi) is the

rate-of-strain tensor. Note that overbars are often included to represent ‘mean’ (or
filtered in LES terms) quantities, but here we are only concerned with slowly varying
(‘mean’) values and the overbars are omitted. The rate of production of turbulent
kinetic energy is given by P = νtS

2 and energy transfer is only from the large-scale
motions, computed directly, to the small-scale turbulence, which is modelled. We
now propose different length scales for horizontal motion lh and vertical motion, lv ,
splitting the rate of strain components for horizontal and vertical turbulence, giving
a formula for turbulent viscosity:
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assuming (∂w/∂z)2 � (∂u/∂x)2 + (∂v/∂y)2, ∂w/∂y � ∂v/∂z and ∂w/∂x � ∂u/∂z for
shallow-water flows where vertical velocity w is small. The vertical length scale lv is
the standard form as defined above. The horizontal length scale is different, usually
larger, than this and the simplest assumption is to assume direct proportionality
defined by lh = βlv . The constant β has to be determined from comparison with
experiment. In the case of parallel (or nearly parallel) flow, eddy viscosity reverts to
its standard boundary-layer form. With lh = lv , it reverts to its correct mathematical
three-dimensional form (with negligible vertical velocity). Although it has been stated
that finite lv is unphysical at the water surface, finite lh is not and the basic assumption
is that lh is uniform over most of the water depth.

4. Results
In the experiments of LS, particle tracking velocimetry (PTV) was used to give

instantaneous surface velocity vectors with examples of vortex shedding and an almost
steady recirculation bubble. The ‘conical island’ has an 8◦ slope and a base diameter
of 0.75 m. The channel is 1.52 m wide and the bed is horizontal and smooth (painted
wood). The depth defining St is adjacent to the island (at a point on a line through the
island centre, normal to the flow direction, away from the immediate influence of the
island). The ‘critical’ St value for the onset of a steady recirculating wake is close to
0.4. For the case of a vertically sided island, CJ suggested a critical value of about 0.5
(although reappraisal in Chen & Jirka (1997) suggested a value closer to 0.6). There
are differences in the width of the (horizontal) shear layers separating from the islands
in the two cases owing to the very different slopes and there are very different ratios
of flume-width-to-diameter. For LS it was about 21

2
(based on mid-depth diameter)

and for CJ it was 10. A further difference between LS and CJ is that, while both
refer to unsteady wake bubbles close to the critical value, LS describe low-frequency
transverse oscillations of the recirculation zones while CJ show wake instability of
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Case hout (m) h (m) Dmid (m) Rh Cf Fr St

1 0.019 0.0200 0.607 1900 0.0085 0.21 0.26
2 0.0145 0.0160 0.636 1450 0.0090 0.23 0.36
3 0.01325 0.0148 0.644 1325 0.0093 0.23 0.405
4 0.012 0.0136 0.652 1200 0.0095 0.26 0.45
5 0.011 0.0129 0.658 1100 0.0097 0.24 0.49
6 0.0065 0.0093 0.676 650 0.0111 0.23 0.80

Table 1. For each case, the following parameters are defined: downstream depth, hout; depth
adjacent to the island, h; island diameter at mid depth, Dmid; depth Reynolds number,
Rh = Uhout/ν; friction coefficient, Cf , from the Blasius formula, Cf = 0.0559R−0.25

h ; Froude
number, Fr = Uc/

√
gh; and stability parameter, St = Cf Dmid/h.

relatively high frequency starting at the downstream end of the recirculation zone (for
example figure 5c in CJ). As the stability parameter is reduced, this becomes rather
like vortex shedding referred to in LS.

The flow parameters for the numerical simulations are given in table 1. The outflow
depth hout and the inflow flux Uhout are prescribed. U = 0.1 m s−1 for all cases.
The depth adjacent to the island h is only known a posteriori. The computational
domain is 4.52 m long and the island centre is 0.76 m from the upstream end. The
bed is horizontal to correspond with experiment where the downstream depth was
not recorded. The St values in the simulations thus do not correspond exactly
with experiment. St values larger than in the experiments were also modelled (by
reducing depth further) to investigate certain effects. The depth Reynolds number,
Rh = Uhout/ν, is always much greater than the generally accepted value of 500
required for turbulent flow. The free-stream Froude number, Fr = Uc/

√
gh, where

Uc(= Uhout/h) is what the mean velocity at the cylinder centre would be without the
cylinder in position, is clearly subcritical. Local values increase, particularly around
the cylinder on the upstream side, but remain subcritical; some contour plots are
shown below. A horizontal mesh of 300 × 100 was generally used with 10 cells in the
vertical, the cell size at the bed giving z+ < 5. Results (velocity variations with time)
with 20 cells were almost identical. Results with a horizontal mesh of 450 × 150 were
very close and examples of superimposed vorticity contours are shown below. At
t = 0, u = U and v = 0 everywhere. Asymmetry was set up by setting the cross-velocity
at inflow v/U = 0.5 sin(πt) for t < 1 s. It will be seen below that β = 6 shows best
agreement with experiment, and surface velocity vector plots are shown in figure 1 for
St = 0.26, 0.36 and 0.405 with β = 6, alongside the PTV measurements for St = 0.27,
0.35 and 0.40.

Clearly, such snapshots of vortex shedding for the two lower St values can only
allow a qualitative comparison, but the size and position of the vortex forming is quite
similar in model and experiment. Most significantly, a stable wake has developed close
to St = 0.4 in both cases and LS reported a downstream stagnation point as far as
1.75 m from the island centre. For the model, this distance is 1.51 m, underpredicting
by 14%. In the experiments of CJ, a nearly stable wake formed at St = 0.5 and the
ratio of this length to diameter was 2.7, the same as that for LS with St = 0.40. With
St = 0.39 (not investigated experimentally), the model produced an unstedy bubble
of the kind described in CJ with wake oscillation only at the end of the bubble, an
example of which will be shown below.
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(a)                                                                  (b)

(i) (i)

(ii) (ii)

(iii) (iii)

Figure 1. (a) Surface velocity vectors from the experiments of LS and (b) the numerical model
with β = 6. The dashed circle shows the island base (of 0.75m diameter) in both cases and
the full line its intersection with the mean surface level (experiments only). The PTV vector
plots were scanned from figure 6 in LS with permission from the American Society of Civil
Engineers. (a) (i) St = 0.27; (ii) 0.35; (iii) 0.40. (b) (i) St = 0.26; (ii) 0.36; (iii) 0.405.

An assumption of turbulence modelling is that the turbulence length scales are
smaller than the larger scale flow structures which are computed directly. The largest
horizontal mixing length is about 0.12 m and it can be seen from figure 1 that this is
much less than the size of the recirculating zones, justifying the assumption.

The sensitivity of results to β is important. To give a quantitative indicator of
unsteady asymmetry, the time variation of cross-flow surface velocity at a distance
of 0.73 m downstream of the island centre, on its centreline, was output for all cases.
Cross-flow wake fluctuation is generally prominent at this position (if it occurs).
Values of this velocity amplitude, after a regular oscillation has become established,
are shown in figure 2. It can be seen that the stable wake observed experimentally at
St = 0.4 is reproduced numerically with β = 6, with vortex shedding occurring for
smaller St values, as observed experimentally.
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Figure 2. Dependence of cross-velocity amplitude, normalized by U = 0.1m s−1, at
x = 0.73m on stability parameter, St, with symbols: �, β = 4; +, 6; �, 7; ×, 8; �, 9; , 10.

Figure 3. Surface velocity vectors from the numerical model with St = 0.36 and β = 5.
The dashed circle shows the island base (of 0.75m diameter).

With β = 4, a stable wake has formed at St = 0.49 with an unsteady bubble at
St = 0.45 and vigorous vortex shedding for St = 0.405 and smaller values. For β = 5
(not represented in figure 2) a similar unsteady bubble is formed with St = 0.36 and
0.405 and a stable wake with St = 0.45. A snapshot for St = 0.36 is shown figure 3.
The vector plot for St = 0.39 and β = 6 was very similar. That an unsteady bubble
occurs with St = 0.36 and β = 5 is surprising since vortex shedding occurs with
β = 4, 6 and 7 at this value of St. It was thought possible that the unsteady bubble
with β = 5 may result from the initial conditions. The computation was repeated
with no artificial asymmetry and almost identical oscillatory wakes were eventually
formed, showing this not to be the case. (This was also found for other cases tested.)
In other respects the results are as might be expected. With St = 0.26, the velocity
amplitude is high and of similar magnitude for β = 4, 5, 6 and 7 and then decreases
as β increases through 8, 9 and 10. For St = 0.36, a stable wake has formed with
β = 9 and 10 and an unsteady bubble with β = 8; lower values have been discussed
above. With St =0.405, a stable wake has been shown with β = 6; there is an unsteady
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Figure 4. Variations of v/U with time t(s) at x = 0.73m, with β = 6 and St = 0.26
(rapidly increasing amplitude) and 0.36 (slowly increasing amplitude).

bubble with β = 5 and vortex shedding with β = 4. With St =0.45, there was also an
unsteady bubble with β = 4. For these latter unsteady bubbles, the downstream wake
oscillation is less than that shown in figure 3. Increasing the channel width in the
model with St = 0.405 and β = 6 to give a width to mid-depth diameter ratio of 4.75
rather than 2.5 still produced a stable wake, indicating that this is not the cause of the
different critical St values between LS and CJ. With β = 1, vigorous vortex shedding
occurred for stability parameter values above and below 0.4, with 0.49 the highest
value tested. The velocities in the wake showed irregular oscillation in contrast to
regular oscillation at higher β values. The special case of β =0 is discussed below.

The time to reach a regular wake oscillation is highly dependent on the stability
parameter and generally increases as the critical value is approached. This is
demonstrated in figure 4 with the cross-velocity time variations for St = 0.26 and 0.36
with β = 6, relating to the results in figure 1. Although the final velocity amplitudes
are similar, the times to reach regular oscillation are an order of magnitude different.
This is consistent with the experimental observations of LS and CJ.

The linear stability analysis of Chen & Jirka (1997), based on a shallow-water
stability (modified Orr–Sommerfeld) equation, gave a critical St value of 0.85, but
this necessarily assumes no horizontal diffusion. It is of interest to determine whether
a steady recirculating wake is modelled with horizontal diffusion set to zero (β = 0)
if St is high enough. Case 6 in table 1 gives St = 0.80 (local to the island) and the
fluctuating cross-velocity at x = 0.73 m very slowly decays to zero. There are further
different basic assumptions between the stability analysis and this model. The effect
of channel width, not present in the analysis, has been mentioned. Dispersion is
automatically included in the model while velocity is assumed uniform over depth in
the analysis. Depth is decreasing downstream in the model (for reasons given above)
while it is constant in the analysis. Nevertheless, it is seen that setting horizontal
diffusion to zero gives a critical St value about twice that in the experiment and
slightly below that determined from linear stability analysis.
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Figure 5. Depth-averaged vorticity, ω (s−1), contours for St = 0.405 with β = 6; dimensions
are in metres. (a) ——, ω = 0.15; . . . , −0.1; – – –, ±1, ±3. (b) ——, ω = −0.1; . . . , 0.05; – – –,
0.1; — - —, 1; — - - —, 3. (c) ω = −0.1, 0.1, 3; ——, 300 × 100mesh; – – –, 450 × 150mesh.

5. Depth-averaged vorticity, potential vorticity and Froude number
The results above have enabled comparison with experiment. Contour plots of

depth-averaged vorticity, Froude number and potential vorticity (defined below) are
also significant. Results for the steady case with St = 0.405, and the strongly vortex-
shedding case with St = 0.26, both with β = 6, are considered.

Figure 5 shows contours of depth-averaged vorticity, ω = ∂u/∂y − ∂v/∂x (with
the overbar indicating depth-averaged), for St = 0.405; figure 5(a) over the whole
domain and figure 5(b) close to the island. It can be seen that maximum ω magnitudes
occur close to the island, but not at the wet/dry intersection. Since h < 1 mm is the
numerical criterion for dry conditions, the model can only indicate trends as h → 0,
but the results do indicate that |ω| → 0 as h → 0. Figure 5(c) shows fewer contours
with those from the 450 × 150 mesh overlaid on those for the 300 × 100 mesh.
The results are generally very close. Figure 6 shows contours of depth-averaged
vorticity for St = 0.26 at t = 400 s (a snapshot of vortex shedding) over the whole
domain. Vorticity behaviour close to the island on the upstream side is similar to
that described above for St = 0.405 and vorticities in the shed vortices decrease as
they move downstream. Potential vorticity, however, has a more relevant physical
interpretation for the latter and contours are shown below.

Figure 7 shows contours of Froude number, Fr =
√

(u2 + v2)/gh, for St = 0.405,
over most of the wake and close to the island. The maximum value is about 0.6, in
the region where ω is also a maximum, which is a marked increase on the free-stream
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4.54.03.53.02.52.01.51.00.50
0

0.5

1.0

1.5

Figure 6. Depth-averaged vorticity, ω = (s−1), contours for St = 0.26 with β = 6, at
t = 400 s; dimensions are in metres: – – –, ω = −0.5; . . . , −0.2; ——, 0.2; — - —, 0.5; - - —, 3.

Figure 7. Contour plots of Froude number for St = 0.405 with β = 6: at large scale (a) and
small scale: ——, Fr = 0.6; - - - -, 0.5; ——, 0.4; — - - –, 0.3; – - – -, 0.2; — —, 0.1; - - - -, 0.05;
——, 0.02; (b), with lower values in the wake and near the stagnation point: ——, Fr =0.6;
- - - -, 0.5; — - - —, 0.4; — - - —, 0.3; — - —, 0.2; — —, 0.1; - - - - -, 0.05; ——, 0.02. Dimensions
are in metres.
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Figure 8. Contour plots of Froude number for St = 0.26 with β = 6 at t = 400 s, with lower
values in the wake and near the stagnation point; dimensions are in metres: ——, Fr =0.6;
- - - -, 0.4; — - - —, 0.3; — - —, 0.2; — —, 0.1; - - - - -, 0.05; ——, 0.02.

value of 0.23. Figure 8 shows contour plots for St = 0.26 over the whole domain; the
maximum is now about 0.7, compared with a free-stream value of 0.21. Close to the
island, where values are highest, the behaviour is similar to that for St = 0.405.

The concept of potential vorticity is widely used in geophysical fluid dynamics
in relation to stratified flows and has recently been used to aid understanding of
depth-averaged vorticity generation and transport in surf-zone waves, e.g. Peregrine



380 P. K. Stansby

1.25

1.00

0.75
0.500.25

(a)

(b)

3.02.52.01.51.00.50

0.75 1.00 1.25

3.5 4.0 4.5

1.5

1.0

0.5

0

Figure 9. Contour plots of potential vorticity at (a) small scale and (b) large scale, for
St = 0.405 with β = 6. Dimensions are in metres. (a) – – –, ωp = −100; . . . , −10; ——,

10, 100, 200, 500, 1000, 2000m−1 s−1 (with values increasing towards wet/dry intersection.
(b) — - —, ωp = −100; ——, −20; . . . , 20; — - —, 100.

(1998). Potential vorticity, ωp = ω/h, is conserved as it is transported in shallow flow,
provided it is inviscid. The transport equation for potential vorticity may be derived
from the depth-averaged shallow-water equations, which may be written conveniently
using vector notation, with the momentum equation in non-conservative form, as

∂h

∂t
+ ∇ · (hu) = 0, (8)

Du
Dt

+ g∇η = R, (9)

where bold denotes vector and R represents terms due to bed friction, dispersion and
horizontal diffusion. With ω = ∇ × u, the equation for potential vorticity may be
obtained

Dωp

Dt
=

∇ × R
h

. (10)

If R = 0, ωp is conserved along a particle path (of depth-averaged form). For
increasing h, producing the well-known phenomenon of vortex stretching, ω increases
and Kelvin’s circulation theorem is satisfied. Of course, R �= 0 in these flows, but
the variation of ωp along a prticle path will give an indication of the importance of
viscous/turbulence effects and also of the origin of vorticity. Contours of ωp are shown
close to the island for St = 0.405 in figure 9(a). The magnitudes are greatest within
one cell size of the wet/dry intersection, where |u| → 0 and |ω| → 0, as indicated
above. In the dry region with h < 1mm, ωp is set to zero so contour values actually on
the intersection are not representative of values as h → 0. However, the highest values
are within one cell size of the intersection, indicating that it is an important source of
potential vorticity, and hence vorticity, even though the vorticity itself is zero at the
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Figure 10. Contour plots of potential vorticity, for St = 0.26 with β = 6 at t = 400 s.
– – –, ωp = −30; . . . , −10; ——, 10; — - —, 20; — - -—, 40. Dimensions are in metres.

intersection. Clearly, the nature of such intersections is significant and requires careful
modelling. Figure 9(b) shows the elongated nature of the wake over whole domain.
Figure 10 shows contours for St = 0.26 at t = 400 s and the magnitude of potential
vorticity decays markedly as the shed vortices move downstream, showing the strong
influence of dispersion, bed friction and horizontal diffusion. Striations of potential
vorticity contours are observed on the downstream outer edges of the shed vortices
in figure 10 and in the corresponding vorticity contours of figure 6. For St = 0.405,
they are also visible on the edge of the wake in figure 5(a) and to a lesser extent
in figure 9(b). Their origin is unclear, but could be associated with weak horizontal
shear-layer instability.

6. Discussion and conclusions
A simple two-layer mixing-length model for turbulence has been incorporated in a

numerical model for shallow-water flow with negligible numerical diffusion and wave
damping. The novel feature is that the horizontal mixing length is explicitly made
a multiple of the vertical mixing length within a general three-dimensional eddy-
viscosity formulation. This means that the horizontal mixing length and associated
strain rates determine the magnitude of eddy viscosity which determines vertical
mixing. The present assumption is perhaps the most simple way of making the
horizontal turbulence length scale greater than the vertical scale, as has been implicitly
assumed previously. It has been demonstrated that this multiple is fundamental to
predicting the features of a range of wake structures for flow around an island,
exhibiting a transition from vigorous vortex-shedding wakes to steady recirculating
wakes as the stability parameter is increased. A multiple of about 6 gives the
best agreement. The size of the recirculating wake, when steady with St = 0.405,
is somewhat underpredicted, the downstream stagnation point being about 14%
closer to the island centre than in the experiments. This may be a limitation of
the simplistic turbulence modelling approach or it may relate to the assumption of
hydrostatic pressure in the shallow-water equations. The latter restricts flow separation
in a vertical plane, which becomes more significant as bed slope increases. While the
magnitude of depth-averaged vorticity approaches zero at the wet/dry intersection,
the magnitude of potential vorticity is at a maximum, indicating the significance of
this intersection for generating vorticity even though its magnitude there approaches
zero. The Froude number is always subcritical in these flows and at the wet/dry
intersection it approaches zero. While this is in contrast to previous assertions that
the flow close to the intersection becomes supercritical as depth approaches zero, e.g.
Schär & Smith (1993), this appears to assume that the friction coefficient remains
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Figure 11. Contour plots of friction coefficient, Cf , normalized by the value for onset flow
(given by the Blasius formula): (a) with St = 0.405 and (b) with St = 0.26 at t = 400 s, (both
with β = 6); dimensions are in metres: — - -—, 10; — - —, 5; – –, 2; ——, 1; - - - , 0.5.

constant. A local friction coefficient is defined by

Cf = 2ν

((
∂u

∂z

)2

b

+

(
∂v

∂z

)2

b

)1/2 /
(u2 + v2),

where b denotes velocity gradient at the bed. Contours of this, normalized by the
onset flow value (given by the Blasius formula), are shown in figure 11 for the steady
case with St = 0.405 and the vortex-shedding case with St = 0.26 (with β = 6).
Values are clearly much greater than the onset value in the wake regions, including
the vortices shed downstream, and increase markedly as the wet/dry intersection is
approached; values over 100 times the onset value were computed, but should be
treated with caution as both numerator and denominator are very small. Cf is set to
zero for depths less than 1 mm so contour values actually on the intersection are not
representative of values as h → 0. However, it is clear that vorticity, and associated
horizontal mixing, increases Cf above its onset flow value and that it increases to
very high values as the intersection is approached where the flow is suppressed from
becoming supercritical. Only in a small (stagnation) region just upstream of the island
does Cf become less than the onset flow value.

The experiments of LS were made at a relatively small scale. However, this is not
expected to be significant since the onset depth Reynolds number, Rh, was greater
than 1300 and the accepted lower limit for turbulent flow is about 500. Comparisons
with detailed experimental measurements close to the wet/dry intersection would
clearly be desirable. Comparisons with experiment are also desirable to determine
how the mixing-length ratio might be affected by different geometries or, for example,
oscillatory tidal flow. While the flows investigated here have been subcritical, an onset
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Froude number of about 0.2 produces a maximum Froude number of about 0.6–0.7
and slightly higher values will probably produce supercritical flow locally, generating
surface ripples and/or shocks. Shocks generate vorticity, further complicating the
physics and presenting a modelling challenge.

An interesting result from the model concerns the formation of unsteady wake
bubbles. The experiments of CJ show relatively high-frequency wake oscillation at
the downstream end of a separation bubble for values of St close to the critical and
this is also reproduced in the model for certain combinations of St and β . In the
experiments of LS, such an unsteady bubble was not observed (although they refer
to slowly varying bubble oscillation near the critical St as an unsteady wake bubble)
and their results were approximately reproduced in the model with β = 6. The model
did, however, produce such an unsteady bubble with this β at a value of St not
investigated experimentally, suggesting that it might have been missed. The model
results further suggest that the formation of an unsteady bubble is sensitive to the
value of β . In particular, for St = 0.36 it occurs with β = 5 but not with β = 6 or
4. In complex full-scale flows, there will be additional factors determining this ratio,
making precise flow prediction problematic.

This study should further emphasize the limitations of depth-averaged modelling
with a constant, or quasi-steady, friction coefficient (or Chézy factor). Horizontal
mixing affects the vertical variation of velocity, which in turn affects bed shear. This
causes the friction coefficient to be increased where vorticity is present (in wakes in
this case). Dispersion is, of course, either omitted, or a standard vertical variation of
velocity is assumed which cannot take into account horizontal diffusion. However,
this study also shows that, for stability parameters away from the critical, flows
with stable wakes or strong vortex shedding are relatively insensitive to horizontal
diffusion and suitably calibrated depth-averaged models may have a useful role with
the advantage of being very computationally efficient.

The author acknowledges several useful suggestions by the referees, particularly
that suggesting potential vorticity. Experimental work on shallow-water flows has
stimulated this study and funding from the Engineering and Physical Sciences
Research Council is acknowledged. A short version of this paper was included in
the International Association for Hydraulics Research Symposium on Shallow Flows,
Delft, June, 2003. The PTV vector plots in figure 1 were reproduced with permission
from the American Society of Civil Engineers.
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